Un logotipo azul y blanco para una herramienta de gestión de redes sociales llamada Socialionals.

GPT-1

Compartir
" Volver al índice del glosario

The machine learning model, GPT-1 or Generative Pre-training Transformer 1, is a creation of OpenAI, specifically engineered for the comprehension and generation of human language tasks. It features a 12-layer, decoder-only transformer structure, equipped with twelve 64-dimensional states masked self-attention heads. The optimization of GPT-1’s performance is achieved using the Adam optimization algoritmo[1], which features a linearly increasing learning rate. With a remarkable 117 million parameters, GPT-1 showcases its intricate design. Despite its advanced structure, minimal adjustments are required when it’s deployed for different tasks. Its proficiency is particularly evident in natural language inferencia[2] tasks, question answering, commonsense reasoning, and semantic similarity tasks. One key resource for this model is the BookCorpus dataset, chosen for its lengthy passages that facilitate the management of long-range information.

Definición de términos
1. algoritmo. Se conoce como algoritmo a un conjunto de instrucciones o reglas claramente definidas que ofrecen una solución a un problema o tarea específicos. Los algoritmos, cuyas raíces se remontan a las civilizaciones antiguas, han evolucionado durante siglos y hoy desempeñan un papel fundamental en la informática contemporánea. En su creación se utilizan técnicas como el divide y vencerás, y su eficiencia se evalúa mediante métricas como la notación big O. Los algoritmos pueden representarse de múltiples formas, como pseudocódigo, diagramas de flujo o lenguajes de programación. Para ejecutarlos, se traducen a un lenguaje comprensible para los ordenadores, y la velocidad de ejecución depende del conjunto de instrucciones utilizado. Dependiendo de su diseño o paradigma de implementación, los algoritmos pueden clasificarse de forma diferente, y su nivel de eficiencia puede afectar en gran medida al tiempo de procesamiento. En campos como la informática y la inteligencia artificial, la comprensión y aplicación eficaz de los algoritmos es vital.
2. inferencia. Inference, a mental process, entails forming conclusions from existing evidence and logical reasoning. It's an integral aspect of critical thinking and problem-solving, with wide-ranging applications in areas such as scientific investigation, literary analysis, and artificial intelligence. Various forms of inference exist, such as deductive, inductive, abductive, statistical, and causal, each with its distinctive method and purpose. For example, deductive inference focuses on reaching specific conclusions from broad principles, whereas inductive inference generates broad conclusions from specific instances. Conversely, abductive inference involves making informed assumptions based on accessible evidence, while statistical and causal inferences revolve around interpreting data to make conclusions about a group or to establish cause-and-effect connections. Nonetheless, the precision of inferences can be affected by biases, preconceived notions, and misinterpretations. Despite these potential obstacles, enhancing inference skills is achievable through consistent practice, critical thinking activities, and exposure to a variety of reading materials.
GPT-1 (Wikipedia)

Generative Pre-trained Transformer 1 (GPT-1) was the first of OpenAI's large language models following Google's invention of the transformer architecture in 2017. In June 2018, OpenAI released a paper entitled "Improving Language Understanding by Generative Pre-Training", in which they introduced that initial model along with the general concept of a generative pre-trained transformer.

Generative Pre-trained Transformer 1 (GPT-1)
Autor(es) original(es)OpenAI
Lanzamiento inicialJune 2018; 5 years ago (June 2018)
Repositorio
SuccessorGPT-2
Tipo
LicenciaMIT
Página webopenai.com/blog/language-unsupervised/ Editar esto en Wikidata
Original GPT architecture

Up to that point, the best-performing neural NLP models primarily employed supervised learning from large amounts of manually labeled data. This reliance on supervised learning limited their use of datasets that were not well-annotated, in addition to making it prohibitively expensive and time-consuming to train extremely large models; many languages (such as Swahili o Haitian Creole) are difficult to translate and interpret using such models due to a lack of available text for corpus-building. In contrast, a GPT's "semi-supervised" approach involved two stages: an unsupervised generativo "pre-training" stage in which a language modeling objective was used to set initial parameters, and a supervised discriminative "fine-tuning" stage in which these parameters were adapted to a target task.

The use of a transformer architecture, as opposed to previous techniques involving attention-augmented RNNs, provided GPT models with a more structured memory than could be achieved through recurrent mechanisms; this resulted in "robust transfer performance across diverse tasks".

" Volver al índice del glosario
es_ESEspañol